Abstract

Cinchona-derived anion-exchange-type chiral selectors have been adapted and employed in countercurrent chromatography (CCC) for the separation of enantiomers of N-derivatized amino acids and 2-aryloxypropionic acids. The accurate optimization of the enantioseparation in terms of solvent system composition, pH values, ionic strength, and CCC operating conditions was performed. A wide range of solvent mixtures was evaluated. Successful resolutions were achieved in systems such as ammonium acetate buffer/tert-amyl alcohol/methanol/heptane and especially ammonium acetate buffer/methyl isobutyl ketone or diisopropyl ether. Up to 300 mg (0.92 mmol) of N-(3,5-dinitrobenzoyl)-(+/-)-leucine was totally resolved in a single run using a 10 mM concentration of chiral selector in 122 mL of stationary phase. This amount could be increased up to 900 mg (2.77 mmol) when pH-zone-refining mode was applied. The results here presented account for the high potential of CCC as a preparative enantiomer separation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.