Abstract

Enantiomer recognition is usually required in organic synthesis and materials and life sciences. This paper describes an enantiomer recognition method based on ternary dynamic covalent systems constructed via the complexation of chiral amines with a chiral boronate derived from 1,4-phenylenediboric acid and an L-DOPA-modified naphthalenediimide. The ternary systems aggregate into chiral assemblies driven by π-π interactions, and the chirality is transferred from the chiral amines to assemblies with high stereospecificity. Consequently, the enantiomer composition of chiral amines and the absolute configuration of the major enantiomer can be determined according to the sign of the Cotton effect of the ternary system by using circular dichroism (CD) spectroscopy. This method offers the advantage of using the long wavelength CD signals of the boronate at around 520 nm, thereby avoiding interference with those of the carbon skeleton. This ternary system provides a novel approach to the design of enantiomer recognition systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.