Abstract

Enantiodetection of chiral molecules is important to chemical reaction control and biological function designs. Traditional optical methods of enantiodetection rely on the weak magnetic-dipole or electric-quadrupole interactions, and in turn suffer from the weak signal and low sensitivity. We propose a new optical enantiodetection method to determine the enantiomeric excess via two-dimensional (2D) spectroscopy of the chiral mixture driven by three electromagnetic fields. The quantities of left- and right-handed chiral molecules are reflected by the intensities of different peaks on the 2D spectrum, separated by the chirality-dependent frequency shifts resulting from the relative strong electric-dipole interactions between the chiral molecules and the driving fields. Thus, the enantiomeric excess can be determined via the intensity ratio of the peaks for the two enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call