Abstract

Artificial enzymes created by computational design and directed evolution are versatile biocatalysts whose promiscuous activities represent potentially attractive starting points for divergent evolution in the laboratory. The artificial aldolase RA95.5-8, for example, exploits amine catalysis to promote mechanistically diverse carboligations. Here we report that RA95.5-8 variants catalyze the asymmetric synthesis of γ-nitroketones via two alternative enantiocomplementary Michael-type reactions: enamine-mediated addition of acetone to nitrostyrenes, and nitroalkane addition to conjugated ketones activated as iminium ions. In addition, a cascade of three aldolase-catalyzed reactions enables one-pot assembly of γ-nitroketones from three simpler building blocks. Together, our results highlight the chemical versatility of artificial aldolases for the practical synthesis of important chiral synthons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call