Abstract

Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment. The enamel extracellular matrix is mainly composed by amelogenin and non-amelogenin. In this study, an innovative strategy was proposed to regenerate enamel-like tissue by constructing a microenvironment using biomimetic enamel matrix proteins (biomimetic EMPs) composed of modified leucine-rich amelogenin peptide (mLRAP) and non-amelogenin analog (NAA). Impressively, the regenerated enamel in this biomimetic EMPs on etched enamel surface produced prismatic structures, and showed similar mechanical properties to natural enamel. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that regenerated crystal was hydroxyapatite. Molecular dynamics simulation analysis showed the binding energy between mLRAP and NAA were electrostatic forces and Van der Walls. These results introduced a promising strategy to induce crystal growth of enamel-like hydroxyapatite for biomimetic reproduction of materials with complicated hierarchical microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.