Abstract

The generation of stable white light emission using lead-free perovskites remains a huge challenge in the development of future display and lighting technologies, due to fast material deterioration and the decrease of the color quality. In this work, we report a combination of diverse types of 2D A2SnX4 (A = bulky cation, X = Br, I) perovskites exhibiting self-trapped exciton (STE) emission and blue luminescent carbon quantum dots (CQDs), with the purpose of generating A2SnX4/CQD inks with a broadband emission in the visible region and a tunable white light color. By varying the concentration of the 2D perovskite, the white emission of the mixtures is modulated to cool, neutral, and warm tonalities, with a PL quantum yield up to 45%. From the combinations, the PEA2SnI4/CQD-based ink shows the longest stability, due to suitable surface ligand passivation provided by the capping ligands covering the CQDs, compensating the defect sites in the perovskite. Then, by incorporating the PEA2SnI4/CQDs inks into an acrylate polymer matrix, the quenching of the PL component from the perovskite was restrained, being stable for >400 h under ambient conditions and at a relative humidity of ∼50%, and allowing the preparation of complex 3D-printed composites with stable white emission tonalities. This contribution offers an application of STE-based Sn-perovskites to facilitate the future fabrication of lead-free white-light optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.