Abstract

Considering the superiorities of abundance, easy collection, low cost, and nearly constant composition, the wasted A4 papers are deemed as a recyclable and scalable carbon source to fabricate functional carbon materials for Zn-ion hybrid supercapacitors (ZIHSCs), which integrate the supercapacitors' high-power output and batteries' high energy density. Herein, the wasted A4 papers are efficiently converted into an advanced carbon material owning a hierarchical porous structure with a high surface area and interconnected multiscale channels, a graphitic structure, and a good level of N/O codoping. By taking advantage of these features, an express electron/ion transfer pathway, a large accessible surface interface, and a robust architecture are achieved for swift kinetics, numerous active sites, and excellent steadiness to afford a charming Zn2+ storage capability for the aqueous coin-type ZIHSC device (a high capacity of 244 mAh g-1 at 0.1 A g-1 with a capacity conservation of 116.4 mAh g-1 even amplifying the current density by 200 times, a supreme energy density of 190.4 Wh kg-1, a supreme power output of 18 kW kg-1, and an eminent durability of 93.8% over 10,000 cycles at 10 A g-1). Excitingly, the quasi-solid ZIHSC device also bespeaks an enjoyable capacity of 211.7 mAh g-1, a high energy density of 159.3 Wh kg-1, good mechanical flexibility, and a low self-discharge rate. This work puts forward a simple and scalable strategy to enable the wasted A4 paper as a competitive carbon source to construct advanced cathode material for Zn2+ storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call