Abstract

It is challenging to satisfy the critical requirements of ultrareliable and low-latency communications (URLLCs) in the Internet of Things (IoT) under severe channel fading. The emerging massive multiuser multiple-input–multiple-output (MU-MIMO) concept is applied in IoT networks under shadow fading, enabling URLLC with pilot-assisted channel estimation (PACE) and zero-forcing (ZF) detection. Assuming users are uniformly and randomly deployed under log-normal shadow fading, the probability density function (pdf) of postprocessing signal-to-noise ratios (SNRs) is derived for the uplink (UL) of massive MU-MIMO with perfect channel state information (CSI) and imperfect CSI obtained by PACE. Then, finite blocklength (FBL) information theory is utilized to derive the error probability of accessing users with a given latency, thereby evaluating the reliability of massive MU-MIMO for short-packet transmissions. Further, the length of pilots to minimize the error probability can be decided by the golden section search method (GSSM), which can converge rapidly. Numerical results verify that massive MU-MIMO can support a large number of UL URLLC users even when users are randomly deployed under shadow fading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.