Abstract

By using molecular dynamics simulations, we show that significant strain hardening and ultrahigh flow stresses are enabled in gold nanowires containing coherent (111) growth twins when balancing nanowire diameter and twin boundary spacing at the nanoscale. A fundamental transition in mechanical behavior occurs when the ratio of diameter to twin boundary spacing is larger than 2.14. A model based on site-specific dislocation nucleation and cross-slip mechanisms is proposed to explain the size dependence of flow behavior in twinned nanowires under tensile loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.