Abstract

Preventing execution of unauthorized software on a given computer plays a pivotal role in system security. The key problem is that although a program at the beginning of its execution can be verified as authentic, while running, its execution flow can be redirected to externally injected malicious code using, for example, a buffer overflow exploit. Existing techniques address this problem by trying to detect the intrusion at run-time or by formally verifying that the software is not prone to a particular attack.We take a radically different approach to this problem. We aim at intrusion prevention as the core technology for enabling secure computing systems. Intrusion prevention systems force an adversary to solve a computationally hard task in order to create a binary that can be executed on a given machine. In this paper, we present an exemplary system--SPEF--a combination of architectural and compilation techniques that ensure software integrity at run-time. SPEF embeds encrypted, processor-specific constraints into each block of instructions at software installation time and then verifies their existence at run-time. Thus, the processor can execute only properly installed programs, which makes installation the only system gate that needs to be protected. We have designed a SPEF prototype based on the ARM instruction set and validated its impact on security and performance using the MediaBench suite of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.