Abstract

Abstract The oil and gas industry faces many challenges as it is committed to provide energy to a world in transition. Declining prices impose constraints to new developments, either greenfield or brownfield. Additionally, the industry’s commitment to long-term value creation with reduced carbon footprint is confronted with the traditional solutions for well construction, production and processing, which consume significant amount of energy with corresponding high CO2 emissions. In this scenario, subsea production and processing technology has been a key enabler for the exploitation of oil and gas resources. This paper presents a holistic review of trends in subsea technology development over recent years which have direct impact on the heart of the subsea production system, namely the subsea tree. The technological developments considered are in different subsea applications such as robotic automation, communication systems, and all-electric systems. The objective of the ongoing research is to perform structural and fundamental analysis of subsea production and injection systems and address the question on how technological developments can be utilized to design an overall better subsea production system so the industry may fully benefit from the economic and ecological impact brought by the joint use of these technologies. Opportunities for reevaluating barrier philosophy to identify technical and economic opportunities for design simplifications of subsea trees that still leave enough pressure barriers in all operational modes are also considered. The analyses presented indicate the current stage of the examined technologies and their potential at reducing both capital and operational cost of subsea systems. These results will be the basis for the future evaluation of improved and new design solutions within the scope of the ongoing project performed by the Norwegian University of Science and Technology and its industrial partners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.