Abstract
We are witnessing increasing interests in developing “smart cities” which helps improve the efficiency, reliability, and security of a traditional city. An important aspect of developing smart cities is to enable “smart transportation,” which improves the efficiency, safety, and environmental sustainability of city transportation means. Meanwhile, the increasing use of GPS devices has led to the emergence of big trajectory data that consists of large amounts of historical trajectories and real-time GPS data streams that reflect how the transportation networks are used or being used by moving objects, e.g., vehicles, cyclists, and pedestrians. Such big trajectory data provides a solid data foundation for developing various smart transportation applications, such as congestion avoidance, reducing greenhouse gas emissions, and effective traffic accident response, etc. Instead of proposing yet another specific smart transportation application, we propose the parallel-distributed network-constrained moving objects database (PD-NMOD), a general framework that manages big trajectory data in a scalable manner, which provides an infrastructure that is able to support a wide variety of smart transportation applications and thus benefiting the smart city vision as a whole. The PD-NMOD manages both transportation networks and trajectories in a distributed manner. In addition, the PD-NMOD is designed to support general SQL queries over moving objects and to efficiently process the SQL queries on big trajectory data in parallel. Such design facilitates smart transportation applications to retrieve relevant trajectory data and to conduct statistical analyses. Empirical studies on a large trajectory data set collected from 3,500 taxis in Beijing offer insight into the design properties of the PD-NMOD and offer evidence that the PD-NMOD is efficient and scalable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.