Abstract

Tandem catalysis capable of completing multistep reactions in a single pot or step is an effective strategy to develop cost-effective and environmentally benign chemical processes. A unique challenge in the selectivity control of tandem reactions is the coexistence of reactants, intermediates, and products from all constituent steps in the same reaction medium, causing side reactions. Thus, distinct catalyst design principles are needed. In this review, we introduce four design concepts for tandem catalysts, comprising engineering of the spatial distribution of catalytic sites, the molecular proximity of sites, the nature of sites, and the size of the pores in which sites reside. Current challenges and opportunities for future research in tandem catalysis are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.