Abstract

AbstractEffective support of real‐time multimedia applications in wireless access networks, viz. cellular networks and wireless LANs, requires a dynamic bandwidth adaptation framework where the bandwidth of an ongoing call is continuously monitored and adjusted. Since bandwidth is a scarce resource in wireless networking, it needs to be carefully allocated amidst competing connections with different Quality of Service (QoS) requirements. In this paper, we propose a new framework called QoS‐adaptive multimedia wireless access (QoS‐AMWA) for supporting heterogeneous traffic with different QoS requirements in wireless cellular networks. The QoS‐AMWA framework combines the following components: (i) a threshold‐based bandwidth allocation policy that gives priority to handoff calls over new calls and prioritizes between different classes of handoff calls by assigning a threshold to each class, (ii) an efficient threshold‐type connection admission control algorithm, and (iii) a bandwidth adaptation algorithm that dynamically adjusts the bandwidth of an ongoing multimedia call to minimize the number of calls receiving lower bandwidth than the requested. The framework can be modeled as a multi‐dimensional Markov chain, and therefore, a product‐form solution is provided. The QoS metrics—new call blocking probability (NCBP), handoff call dropping probability (HCDB), and degradation probability (DP)—are derived. The analytical results are supported by simulation and show that this work improves the service quality by minimizing the handoff call dropping probability and maintaining the bandwidth utilization efficiently. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.