Abstract
Parallel implementations of dynamic structured adaptive mesh refinement (SAMR) methods lead to significant runtime management challenges that can limit their scalability on large systems. This paper presents a runtime engine that addresses the scalability of SAMR applications with localized refinements and high SAMR efficiencies on large numbers of processors (upto 1024 processors). The SAMR runtime engine augments hierarchical partitioning with bin-packing based load-balancing to manage the space-time heterogeneity of the SAMR grid hierarchy, and includes a communication substrate that optimizes the use of MPI non-blocking communication primitives. An experimental evaluation on the IBM SP2 supercomputer using the 3-D Richtmyer-Meshkov compressible turbulence kernel demonstrates the effectiveness of the runtime engine in improving SAMR scalability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.