Abstract

Multi-agent systems (MAS) represent a distributed computing paradigm well suited to tackle today’s challenges in the field of the Internet of Things (IoT). Both share many similarities such as the interconnection of distributed devices and their cooperation. The combination of MAS and IoT would allow the transfer of the experience gained in MAS research to the broader range of IoT applications. The key enabler for utilizing MAS in the IoT is the ability to build large-scale and fault-tolerant MASs since IoT concepts comprise possibly thousands or even millions of devices. However, well known multi-agent platforms (MAP), e. g., Java Agent DE-velopment Framework (JADE), are not able to deal with these challenges. To this aim, we present a cloud-native Multi-Agent Platform (cloneMAP) as a modern MAP based on cloud-computing techniques to enable scalability and fault-tolerance. A microservice architecture is used to implement it in a distributed way utilizing the open-source container orchestration system Kubernetes. Thereby, bottlenecks and single-points of failure are conceptually avoided. A comparison with JADE via relevant performance metrics indicates the massively improved scalability. Furthermore, the implementation of a large-scale use case verifies cloneMAP’s suitability for IoT applications. This leads to the conclusion that cloneMAP extends the range of possible MAS applications and enables the integration with IoT concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.