Abstract

Enabling communication between routers and endpoints has long been sought after as an approach to congestion control in the Internet. However, the narrow-waist of TCP/IP has complicated the deployment of such communication. In this paper, we present Kick-Ass1, a congestion control mechanism that enables explicit rate congestion control protocols to be deployed within the TCP/IP stack. The key idea is to utilize packet lengths as a vehicle to communicate fine-grained explicit rate and other information from routers to endpoints and vice versa. Given that our approach (i) requires no explicit coordination among Kick-Ass routers, (ii) no explicit coordination among Kick-Ass routers and endpoints, and (iii) is effective on paths that include legacy routers, it provides a practical road towards a faster Internet, today. Using large-scale simulations, testbed experiments, and wide-area Internet evaluations, we demonstrate that (i) a basic explicit-rate protocol using the Kick-Ass mechanism improves flow completion times by up to an order of magnitude and outperforms endpoint-based approaches, including CUBIC and PCC. (ii) Kick-Ass is incrementally deployable on the Internet. (iii) Deploying Kick-Ass at end-hosts and edge routers can enable the above performance benefits, without waiting for universal adoption. (iv) Our packet-fragmentation mechanism is well behaved on the Internet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.