Abstract

The emergence of novel computational hardware is enabling a new paradigm for rapid machine learning model training. For the Department of Energy’s major research facilities, this developing technology will enable a highly adaptive approach to experimental sciences. In this manuscript we present the per-epoch and end-to-end training times for an example of a streaming diagnostic that is planned for the upcoming high-repetition rate x-ray Free Electron Laser, the Linac Coherent Light Source-II. We explore the parameter space of batch size and data parallel training across multiple Graphics Processing Units and Reconfigurable Dataflow Units. We show the landscape of training times with a goal of full model retraining in under 15 min. Although a full from scratch retraining of a model may not be required in all cases, we nevertheless present an example of the application of emerging computational hardware for adapting machine learning models to changing environments in real-time, during streaming data acquisition, at the rates expected for the data fire hoses of accelerator-based user facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.