Abstract

Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking the in vivo mechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 ∼ 10 times min−1, we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when using in vitro models to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.