Abstract

Porous oxide and semiconductor inverse opals are obtained through an orthogonal process that utilizes a colloidal crystal formed from monodisperse starburst carbon spheres as a template. Through atomic layer deposition and static chemical vapor deposition, the templated materials penetrate deep into the ultra-high surface area colloids, generating the porous inverse opal after carbon removal. The carbon can be removed by either thermal oxidation or oxygen plasma, processes which do not etch the templated materials. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Supplementary Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.