Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for obtaining precise information about the local bonding of materials, but difficult to interpret without a well-vetted dataset of reference spectra. The ability to predict NMR parameters and connect them to three-dimensional local environments is critical for understanding more complex, long-range interactions. New computational methods have revealed structural information available from 29Si solid-state NMR by generating computed reference spectra for solids. Such predictions are useful for the identification of new silicon-containing compounds, and serve as a starting point for determination of the local environments present in amorphous structures. In this study, we have used 42 silicon sites as a benchmarking set to compare experimentally reported 29Si solid-state NMR spectra with those computed by CASTEP-NMR and Vienna Ab Initio Simulation Program (VASP). Data-driven approaches enable us to identify the source of discrepancies across a range of experimental and computational results. The information from NMR (in the form of an NMR tensor) has been validated, and in some cases corrected, in an effort to catalog these for the local spectroscopy database infrastructure (LSDI), where over 10,000 29Si NMR tensors for crystalline materials have been computed. Knowledge of specific tensor values can serve as the basis for executing NMR experiments with precision, optimizing conditions to capture the elements accurately. The ability to predict and compare experimental observables from a wide range of structures can aid researchers in their chemical assignments and structure determination, since the computed values enables the extension beyond tables of typical chemical shift (or shielding) ranges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.