Abstract

Metal halide perovskites are promising for next-generation flexible photodetectors owing to their low-temperature solution processability, mechanical flexibility, and excellent photoelectric properties. However, the defects and notorious ion migration in polycrystalline metal halide perovskites often lead to high and unstable dark current, thus deteriorating their detection limit and long-term operations. Here, we propose an electrical field modulation strategy to significantly reduce the dark current of metal halide perovskites-based flexible photodetector more than 1000 times (from ~5 nA to ~5 pA). Meanwhile, ion migration in metal halide perovskites is effectively suppressed, and the metal halide perovskites-based flexible photodetector shows a long-term continuous operational stability (~8000 s) with low signal drift (~4.2 × 10−4 pA per second) and ultralow dark current drift (~1.3 × 10−5 pA per second). Benefitting from the electrical modulation strategy, a high signal-to-noise ratio wearable photoplethysmography sensor and an active-matrix photodetector array for weak light imaging are successfully demonstrated. This work offers a universal strategy to improve the performance of metal halide perovskites for wearable flexible photodetector and image sensor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.