Abstract
The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant.
Highlights
The filamentous fungus Trichoderma reesei is an efficient producer of extracellular lignocellulose degrading enzymes and is used as a production organism by enzyme industries worldwide
Several T. reesei enzymes have obtained the generally recognized as safe (GRAS) status by the U.S Food and Drug Administration
PMSF, a serine protease inhibitor, was able to inhibit half of the degradation caused by T. reesei proteases
Summary
The filamentous fungus Trichoderma reesei is an efficient producer of extracellular lignocellulose degrading enzymes and is used as a production organism by enzyme industries worldwide. It is amenable to large scale fermentation processes and has a long history of safe use in the enzyme production industry. Several T. reesei enzymes have obtained the generally recognized as safe (GRAS) status by the U.S Food and Drug Administration. PLOS ONE | DOI:10.1371/journal.pone.0134723 August 26, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.