Abstract

In the previous paper of this series [Ko, H.-Y. et al. J. Chem. Theory Comput. 2020, 16, 3757-3785], we presented a theoretical and algorithmic framework based on a localized representation of the occupied space that exploits the inherent sparsity in the real-space evaluation of the exact exchange (EXX) interaction in finite-gap systems. This was accompanied by a detailed description of exx, a massively parallel hybrid message-passing interface MPI/OpenMP implementation of this approach in Quantum ESPRESSO (QE) that enables linear scaling hybrid density functional theory (DFT)-based ab initio molecular dynamics (AIMD) in the microcanonical/canonical (NVE/NVT) ensembles of condensed-phase systems containing 500-1000 atoms (in fixed orthorhombic cells) with a wall time cost comparable to semi-local DFT. In this work, we extend the current capabilities of exx to enable hybrid DFT-based AIMD simulations of large-scale condensed-phase systems with general and fluctuating cells in the isobaric-isoenthalpic/isobaric-isothermal (NpH/NpT) ensembles. The theoretical extensions to this approach include an analytical derivation of the EXX contribution to the stress tensor for systems in general simulation cells with a computational complexity that scales linearly with system size. The corresponding algorithmic extensions to exx include optimized routines that (i) handle both static and fluctuating simulation cells with non-orthogonal lattice symmetries, (ii) solve Poisson's equation in general/non-orthogonal cells via an automated selection of the auxiliary grid directions in the Natan-Kronik representation of the discrete Laplacian operator, and (iii) evaluate the EXX contribution to the stress tensor. Using this approach, we perform a case study on a variety of condensed-phase systems (including liquid water, a benzene molecular crystal polymorph, and semi-conducting crystalline silicon) and demonstrate that the EXX contributions to the energy and stress tensor simultaneously converge with an appropriate choice of exx parameters. This is followed by a critical assessment of the computational performance of the extended exx module across several different high-performance computing architectures via case studies on (i) the computational complexity due to lattice symmetry during NpT simulations of three different ice polymorphs (i.e., ice Ih, II, and III) and (ii) the strong/weak parallel scaling during large-scale NpT simulations of liquid water. We demonstrate that the robust and highly scalable implementation of this approach in the extended exx module is capable of evaluating the EXX contribution to the stress tensor with negligible cost (<1%) as well as all other EXX-related quantities needed during NpT simulations of liquid water (with a very tight 150 Ry planewave cutoff) in ≈5.2 s ((H2O)128) and ≈6.8 s ((H2O)256) per AIMD step. As such, the extended exx module presented in this work brings us another step closer to routinely performing hybrid DFT-based AIMD simulations of sufficient duration for large-scale condensed-phase systems across a wide range of thermodynamic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call