Abstract

This study develops a an optimization model focused on the layout and dispatch of a low-carbon hydrogen supply chain. The objective is to identify the lowest Levelized Cost of Hydrogen for a given demand. The model considers various elements, including electricity supply from the local grid and renewable sources (photovoltaic and wind), alongside hydrogen production, compression, storage, and transportation to end users. Applied to an industrial case study in Sweden, the findings indicate that the major cost components are linked to electricity generation and investment in electrolyzers, with the LCOH reaching 5.2 EUR/kgH2 under typical demand conditions. Under scenarios with higher peak demands and greater demand volatility, the LCOH increases to 6.8 EUR/kgH2 due to the need for additional renewable energy capacity. These results highlight the critical impact of electricity availability and demand fluctuations on the LCOH, emphasizing the complex interdependencies within the hydrogen supply chain. This study provides valuable insights into the feasibility and cost-effectiveness of adopting hydrogen as an energy carrier for renewable electricity in the context of decarbonizing industrial processes in the energy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.