Abstract
Organic solar cells (OSCs) suffer from severe upscaling loss due to the inevitable formation of inhomogeneities and the intrinsically low charge mobilities of organic materials limiting the charge extraction efficiency, especially in the situation where cell width reaches centimeter scale. Here, we report the introduction of a nematic liquid crystal donor, BTR-Cl, into a typical non-fullerene blending system of PM6:BTP-eC9. The participation of BTR-Cl contributes to a significantly improved crystallinity and ordering of the host components and facilitates efficient three-dimensional charge transport in the active layer. Simultaneously improved fill factor and current density are thus achieved in BTR-Cl-doped OSCs, corresponding to a superior efficiency of 18.31%. More importantly, a high efficiency of 16.88% along with a robust fill factor of 73.4% is retained when enlarging the effective device area from 0.034 to 1.01 cm2, highlighting the importance of three-dimensional charge transport in reducing the upscaling loss of OSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.