Abstract

Flexible solid-state batteries (FSSBs) are indispensable energy storage devices to fulfil the energy and safety requirements for future flexible applications. The bottlenecks of FSSBs are how to realize high energy density with competent ionic conductivity for room-temperature (RT) flexible applications. Here, the first fabrication of RT FSSB with high energy density is reported, which is realized by in situ integration of a 20-µm-thick hybrid polymer/ceramic/ionic liquid solid-state electrolyte (SSE) between the high energy combination of anode/cathode electrodes. The in situ electrode/electrolyte interfacial integration strategy provides an ultrathin SSE layer, ultralow resistance and superior flexibility, and the SSE guarantees both high ionic conductivity and good compatibility with high-energy cathode LiNi0.8Co0.1Mn0.1O2 (NCM811). The fabricated Li4Ti5O12/NCM811 FSSB delivers super-low resistance approaching conventional liquid cells and excellent cycling stability up to 600 cycles at RT. The extension of anode to SiOx@graphite leads to a high theoretical energy density of 489.6 Wh kg−1 at material’s level, times higher than current options. In addition, the RT FSSB shows great flexibility, indicating a high performance application in future flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.