Abstract

Prussian blue analogues (PBAs) are considered as promising cathode materials for capacitive deionization (CDI) technology due to their 3D open‐frame structure and tunable redox active sites. However, the inevitably high content of [Fe(CN)6] vacancies in the crystal structure results in a low salt adsorption capacity (SAC) and poor recycling performance. Herein, a high‐salt nano‐reaction system is established by mechanochemical ball milling, enabling the preparation of a variety of highly crystallized PBAs (metal hexacyanoferrate, MHCF‐B‐170, M = Ni, Co, or Cu) with low vacancies (0.05–0.06 per formula unit). The reduction of vacancies in the PBAs lattice not only strengthens the conductivity and promotes the rapid transfer of electrons, but also reduces the migration energy barrier and accelerates the fast and reversible diffusion of Na+ ions. The structural characterization method and theoretical simulation demonstrates the excellent reversibility and crystal structure stability of MHCF‐B‐170 during the CDI process. Impressively, the NiHCF‐B‐170 exhibits excellent CDI performance, characterized by an exceptionally high SAC of up to 101.4 mg g−1 at 1.2 V, and demonstrates remarkable cycle stability with no significant degradation observed even after 100 cycles. This PBAs with low Fe(CN)6 vacancies are expected to be a competitive candidate material for CDI electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.