Abstract

Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF4)2·xH2O and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs. The strong coordination between Zn2+ and SL triggers the eutectic feature, enabling the low-temperature availability of HEEs. The restriction of BF4 - hydrolysis in the eutectic system can realize favorable compatibility between Zn(BF4)2-based electrolyte and ZMAs. Besides, the newly-established solvation structure with the participation of SL, H2O, and BF4 -, can induce in situ formation of desirable SEI with gradient structure consisting of B,O-rich species, ZnS, and ZnF2, to offer satisfactory protection toward ZMAs. Consequently, the HEE allows the Zn||Zn symmetric cell to cycle over 1650h at 2mAcm-2 and 1mAhcm-2. Moreover, the Zn||NH4V4O10 full batteries can deliver a prolonged lifespan for 1000 cycles with a high capacity retention of 83.4%. This work represents a feasible approach toward the elaborate design of advanced electrolyte systems for next-generation batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.