Abstract

Negative capacitance FETs (NCFETs) have attracted significant interest due to their steep-switching capability at a low voltage and the associated benefits for implementing energy-efficient Boolean logic. While most existing works aim to avoid the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}_{D}$ </tex-math></inline-formula> – <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{G}$ </tex-math></inline-formula> hysteresis in NCFETs, this paper exploits this hysteresis feature for logic-memory synergy and presents a custom-designed nonvolatile NCFET D flip-flop (DFF) that maintains its state during power outages. This paper also presents an NCFET fabricated for this purpose, showing <10 mV/decade steep hysteresisedges and high, up to seven orders inmagnitude, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{\text {DS}}$ </tex-math></inline-formula> ratio between the two polarization states. With a device-circuit codesign that takes advantage of the embedded nonvolatility and the high <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{\text {DS}}$ </tex-math></inline-formula> ratio, the proposed DFF consumes negligible static current in backup and restore operations, and remains robust even with significant global and local ferroelectric material variations across a wide 0.3–0.8 V supply voltage range. Therefore, the proposed DFF achieves energy-efficient and low-latency backup and restore operations. Furthermore, it has an ultralow energy-delay overhead, below 2.1% in normal operations, and operates using the same voltage supply as the Boolean logic elements with which it connects. This promises energy-efficient nonvolatile computing in energy-harvesting and power-gating applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.