Abstract

Enhancing double-phase mass transfer capability and reducing overpotential at high currents are critical in the oxygen evolution reaction (OER) catalyst design. In this work, nickel–iron layered double hydroxide (NiFe-LDH) loaded on nickel foam (NF) was used as a self-sacrificing template for subsequent growth of nickel–iron Prussian blue (NiFe-PBA) hollow nanocubes on its sheet arrays. The triple-scale porous structure is therefore in-situ constructed in the produced NiFe-PBA@LDH/NF catalyst, where NiFe-PBA nanocubes, NiFe-LDH sheets and NF skeletons provide pores at hundred-nanometers, microns and hundred-microns, respectively. Due to the successful construction of hierarchical mass transfer channels in the catalyst, the overpotential required to deliver 1000 mA cm−2 OER is only 396 mV, which is 80 mV lower than that of NiFe-LDH/NF with a double-scale porous structure, manifesting the importance of the appropriate mass transfer channels, promoting the potential application of the NiFe-PBA@LDH/NF catalyst in industrial-scale electrolysers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.