Abstract
The development of a high quality tablet of Celecoxib (CEL) is challenged by poor dissolution, poor flowability, and high punch sticking propensity of CEL. In this work, we demonstrate a particle engineering approach, by loading a solution of CEL in an organic solvent into a mesoporous carrier to form a coprocessed composite, to enable the development of tablet formulations up to 40% (w/w) of CEL loading with excellent flowability and tabletability, negligible punch sticking propensity, and a 3-fold increase in in vitro dissolution compared to a standard formulation of crystalline CEL. CEL is amorphous in the drug-carrier composite and remained physically stable after 6 months under accelerated stability conditions when the CEL loading in the composite was ≤ 20% (w/w). However, crystallization of CEL to different extents from the composites was observed under the same stability condition when CEL loading was 30–50% (w/w). The success with CEL encourages broader exploration of this particle engineering approach in enabling direct compression tablet formulations for other challenging active pharmaceutical ingredients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.