Abstract

In the cellular context, proteins participate in communities to perform their function. The detection and identification of these communities as well as in-community interactions has long been the subject of investigation, mainly through proteomics analysis with mass spectrometry. With the advent of cryogenic electron microscopy and the "resolution revolution," their visualization has recently been made possible, even in complex, native samples. The advances in both fields have resulted in the generation of large amounts of data, whose analysis requires advanced computation, often employing machine learning approaches to reach the desired outcome. In this work, we first performed a robust proteomics analysis of mass spectrometry (MS) data derived from a yeast native cell extract and used this information to identify protein communities and inter-protein interactions. Cryo-EM analysis of the cell extract provided a reconstruction of a biomolecule at medium resolution (∼8 Å (FSC=0.143)). Utilizing MS-derived proteomics data and systematic fitting of AlphaFold-predicted atomic models, this density was assigned to the 2.6 MDa complex of yeast fatty acid synthase. Our proposed workflow identifies protein complexes in native cell extracts from Saccharomyces cerevisiae by combining proteomics, cryo-EM, and AI-guided protein structure prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.