Abstract
Recent studies have shown that positive impact of Cooperative Adaptive Cruise Control (CACC) can only be guaranteed as market penetration rate increases. Removing the string homogeneity constraint is essential to encourage widespread adoption. In this work, a hierarchical architecture is proposed to enable CACC on vehicles with not only mixed dynamics but also different powertrain types. A low-level layer deals with the vehicle and powertrain dynamics to provide accurate and consistent reference speed tracking response. The high-level layer uses: (1) a Linear Parameter Varying feedback system to provide loop stability, robustness and enforce a variable time gap policy and (2) a feedforward system that processes Vehicle-to-Vehicle information to enhance string stability and response bandwidth, by dealing with the string heterogeneity. A gap management strategy is built on top of the CACC architecture to handle gap setting changes or cut-in/out situations, via a dynamics constrained time gap trajectory planning algorithm. The proposed work has been designed, developed and validated on three different real passenger vehicles on public highways and test tracks, showing the potential of the proposed algorithm to enable robust string stable CACC, despite the different dynamics and powertrains considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.