Abstract

In this work, we present a comprehensive study on the effect of adding different conductive salt additives including LiPF6, LiBF4 and LiDFOB, as well as the fluorinated solvent additive methyl difluoroacetate (MDFA) to a bis(fluorosulfonyl)imide (FSI)-based ionic liquid (IL) electrolyte, i.e. Pyr14FSI/LiFSI, to protect the Al current collector (ACC) from anodic dissolution and, thus, enable reversible charge/discharge cycling in a high performance dual-ion cell. Chronocoulometry and scanning electron microscopy measurements were conducted to evaluate the specific ACC passivation ability of each electrolyte. Furthermore, the influence of these additives on anion intercalation behavior into the graphite positive electrode with special emphasis on the Coulombic efficiency (CE), reversible capacity, as well as capacity retention is presented. Overall, we can show that the addition of small amounts of LiPF6, LiBF4 and MDFA (0.5 wt%) into the FSI-based IL electrolyte significantly increases the overall cell performance, whereas LiDFOB as electrolyte additive deteriorates the dual-ion cell performance. In addition, an excellent cycling performance for 1000 cycles is obtained for the Pyr14FSI electrolyte having 5 wt% LiPF6, displaying an average reversible capacity of 40 mAh g−1, a CE exceeding 98% and a capacity retention of 91%, which has not been reported so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.