Abstract

This study examined the obligate aerobe, Pseudomonas putida, using acetate as the sole carbon and energy source, and respiration via an anode as the terminal electron acceptor under anoxic conditions. P. putida showed significantly different acetate assimilation in a closed-circuit microbial fuel cell (CC-MFC) compared to an open circuit MFC (OC-MFC). More than 72% (2.6 mmol) of acetate was consumed during 84 hrs in the CC-MFC in contrast to the no acetate consumption observed in the OC-MFC. The CC-MFC produced 150 μA (87 C) from acetate metabolization. Electrode-based respiration reduced the NADH/NAD+ ratio anaerobically, which is similar to the aerobic condition. The CC-MFC showed significantly higher acetyl-CoA synthetase activity than the OC-MFC (0.028 vs. 0.001 μmol/min/mg), which was comparable to the aerobic condition (circa 60%). Overall, electrode-based respiration enables P. putida to metabolize acetate under anoxic conditions and provide a platform to regulate the bacterial redox balance without oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.