Abstract

There is increasing interest in utilizing AI-generated content for gadolinium-free contrast-enhanced breast MRI. To develop a generative model for gadolinium-free contrast-enhanced breast MRI and evaluate the diagnostic utility of the generated scans. Retrospective. Two hundred seventy-six women with 304 breast MRI examinations (49 ± 13 years, 243/61 for training/testing). ZOOMit diffusion-weighted imaging (DWI), T1-weighted volumetric interpolated breath-hold examination (T1W VIBE), and axial T2 3D SPACE at 3.0 T. A generative model was developed to generate contrast-enhanced scans using precontrast T1W VIBE and DWI images. The generated and real images were quantitatively compared using the structural similarity index (SSIM), mean absolute error (MAE), and Dice similarity coefficient. Three radiologists with 8, 5, and 5 years of experience independently rated the image quality and lesion visibility on AI-generated and real images within various subgroups using a five-point scale. Four breast radiologists, with 8, 8, 5, and 5 years of experience, independently and blindly interpreted four reading protocols: unenhanced MRI protocol alone and combined with AI-generated scans, abbreviated MRI protocol, and full-MRI protocol. Results were assessed using t-tests and McNemar tests. Using pathology diagnosis as reference standard, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for each reading protocol. A P value <0.05 was considered significant. In the test set, the generated images showed similarity to the real images (SSIM: 0.935 ± 0.047 [SD], MAE: 0.015 ± 0.012 [SD], and Dice coefficient: 0.726 ± 0.177 [SD]). No significant difference in lesion visibility was observed between real and AI-generated scans of the mass, non-mass, and benign lesion subgroups. Adding AI-generated scans to the unenhanced MRI protocol slightly improved breast cancer detection (sensitivity: 92.86% vs. 85.71%, NPV: 76.92% vs. 70.00%); achieved non-inferior diagnostic utility compared to the AB-MRI protocol and full-protocol (sensitivity: 92.86%, 95.24%; NPV: 75.00%, 81.82%). AI-generated gadolinium-free contrast-enhanced breast MRI has potential to improve the sensitivity of unenhanced MRI in detecting breast cancer. 4 TECHNICAL EFFICACY: Stage 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.