Abstract

Segmenting gland instances in histology images is highly challenging as it requires not only detecting glands from a complex background but also separating each individual gland instance with accurate boundary detection. However, due to the boundary uncertainty problem in manual annotations, pixel-to-pixel matching based loss functions are too restrictive for simultaneous gland detection and boundary detection. State-of-the-art approaches adopted multi-model schemes, resulting in unnecessarily high model complexity and difficulties in the training process. In this paper, we propose to use one single deep learning model for accurate gland instance segmentation. To address the boundary uncertainty problem, instead of pixel-to-pixel matching, we propose a segment-level shape similarity measure to calculate the curve similarity between each annotated boundary segment and the corresponding detected boundary segment within a fixed searching range. As the segment-level measure allows location variations within a fixed range for shape similarity calculation, it has better tolerance to boundary uncertainty and is more effective for boundary detection. Furthermore, by adjusting the radius of the searching range, the segment-level shape similarity measure is able to deal with different levels of boundary uncertainty. Therefore, in our framework, images of different scales are down-sampled and integrated to provide both global and local contextual information for training, which is helpful in segmenting gland instances of different sizes. To reduce the variations of multi-scale training images, by referring to adversarial domain adaptation, we propose a pseudo domain adaptation framework for feature alignment. By constructing loss functions based on the segment-level shape similarity measure, combining with the adversarial loss function, the proposed shape-aware adversarial learning framework enables one single deep learning model for gland instance segmentation. Experimental results on the 2015 MICCAI Gland Challenge dataset demonstrate that the proposed framework achieves state-of-the-art performance with one single deep learning model. As the boundary uncertainty problem widely exists in medical image segmentation, it is broadly applicable to other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.