Abstract

Recent progresses in additive manufacturing have inspired new technologies, such as direct laser writing technique, based on two-photon polymerization (2 PP), which complements and further enriches the nanofabrication tools portfolio. In this work, we combine 2 PP and our mask-free scanning probe assisted ‘direct-write patterning’ (DWP) method to allow for: a) the fabrication of micro-bridge structures with sub-micrometer resolution, b) selective synthesis of crystalline ZnO nanowires at predefined locations, respectively. This synergistic approach enables cantilever probe patterning of catalysts directly on suspended micro-bridges for in-situ CVD growth of nanoscale material, in a templated manner. The study reported here represents the first proof-of-concept experiments demonstrating versatile and scalable methodology, which can be applied and straightforwardly extended to grow a variety of other nanomaterials, in a controlled and selective fashion, on freestanding micro/nanoscale structures, whose size and geometry can be conveniently varied via templating of sacrificial 2 PP polymeric scaffolds. Finally, the demonstration of the possibility to integrate this new approach with the conventional lithography techniques provides a step forward to the development of the novel class of hybrid polymer-silicon-1D or -2D materials, and systems. The quality of the produced ZnO nanowire assemblies was assessed using several physical characterization methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call