Abstract

Uncontrollable dendrite growth and side reactions that arise at the Zn anode severely impede the commercial applications of Zinc ion batteries. In particular, the low utilization rate of Zinc metal often results in low energy density. Herein, a more practicable non-dendrite zinc anode was designed to replace traditional zinc foils by hybridization of commercial zinc powders and pristine graphene (PG). The formed three-dimensional PG network not only enhance adhesion between zinc powder particles forming stable Zn powder/PG hybrid electrode with enough mechanical strength but also uniformize the local electrical field as a redistributor, leading to non-dendritic Zinc metal plating/stripping in combination with crystalline plane induce effect of PG. As a result, extremely low voltage hysteresis of 89 mV and long cycle life over 360 h (vs. 349 mV and 30 h for zinc foil) at large current density of 5 mA cm−2 are achieved for the Zn powder/PG anode. Notably, the Zn powder/PG anode can obviously enhance the rate performance and entire energy density of Zn||MnO2 full battery by nearly two times because of the higher utilization of Zn powder/PG anode. Therefore, this work provides new insight for designing practical zinc anode for high specific energy ZIB devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call