Abstract

The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 108 nanotubes per mm2 (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a ‘bamboo’-like or ‘membrane’-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp2-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a ‘mixed base-and-tip’ (primarily of the base-type) type as compared to the purely ‘base’-type for undoped MWCNTs.

Highlights

  • The doping of carbon nanotubes (CNTs) with boron [1,2], nitrogen [3,4] or phosphorus [5] atoms has been frequently used to enhance or tune their physicochemical properties

  • The conditions of the synthesis were analogous to those applied for the catalytic growth of pristine multi-wall CNTs (MWCNTs) arrays

  • nitrogendoped carbon nanotubes (N-CNTs) grew both on the quartz substrates inserted into the centre of the furnace as well as on the internal wall of the quartz reactor

Read more

Summary

Introduction

The doping of carbon nanotubes (CNTs) with boron [1,2], nitrogen [3,4] or phosphorus [5] atoms has been frequently used to enhance or tune their physicochemical properties. The overall conversion of the initial carbon (in all carbonbearing starting reactants) into carbon in nanotubes was different for MWCNTs and N-CNTs and was found to depend upon: 1) [FeCp2] as a crucial catalyst for the growth of nanotubes, and 2) [Pz] as the source of nitrogen compounds that no. For these two extreme cases, the yield of nanotubes per amount of carbon was 8.9 and 36.6% for N-CNTs (Synthesis VII, [Pz] = 30%, [FeCp2] = 2%, [PhMe] = 68%) and MWCNTs, respectively.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call