Abstract

Avian myogenesis is partly characterized by commitment of distinct myoblast cell lineages to the formation of specific muscle fiber types. Previous studies have identified the transcription factor EMX2 as a regulator of slow myosin heavy chain 2 (MyHC2) gene expression in fast/slow primary muscle fibers. We report here the interaction of EMX2 with the slow MyHC2 transcriptional regulatory region in fast/slow embryonic muscle fibers. Promoter activity and electromobility shift assays localized the site of interaction of EMX2 with the slow MyHC2 gene within a defined binding site located between 3336 and 3326bp from the 3′ end of the cloned slow MyHC2 DNA containing the transcriptional regulatory region. Using clonally-derived myoblasts stably committed to the formation of fast/slow muscle fibers, we also report the effect of altered EMX2 gene expression on genome-wide gene expression within these myoblasts. Increased EMX2 gene expression in fast/slow myoblasts caused altered gene expression of 1185 genes, indicating that EMX2 plays a central role in the gene expression profile of embryonic myoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call