Abstract
Anisotropic particles have attracted significant attention due to their alluring features that distinguish them from isotropic particles. One of the most appealing strategies for the synthesis of anisotropic particles is the emulsion-guided method. However, morphological control and the understanding of formation mechanisms have remained a major challenge. Based on a novel mechanism, here, a facile one-pot emulsion-templating method for the tunable construction of anisotropic polymeric particles (APPs) with different defined structures is reported. Three types of monocomponent APPs with new morphologies and sizes in the range of 240-650nm, including Janus mushroom-like mesoporous poly(m-phenylenediamine) (PmPD) particles, wheel-shaped particles, and acorn-like PmPD particles, are obtained by controlling the average size of the oil droplets in the emulsion. Furthermore, the APPs demonstrate the ability for conversion to nitrogen-doped anisotropic carbon particles (ACPs) by pyrolysis at 800°C under a N2 atmosphere, thereby inheriting their structures. These novel ACPs show appreciable potential as metal-free electrocatalysts for use in oxygen reduction reactions. Compared to their isotropic counterpart, these ACPs exhibit remarkable advantages such as enhanced specific surface area and pore volume, reduced stacking density, and easy fabrication of continuous and uniform membrane electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.