Abstract

Lithium manganese oxide (LiMn 2O 4) used as a positive-electrode material in lithium-ion batteries is prepared by a new water-in-oil emulsion process. An aqueous solution containing lithium and manganese cations is emulsified in kerosene by adding sorbitan monooleate as the surfactant. When the precursor solution is agitated by a magnetic mixer, impure products are obtained. LiMn 2O 4 is formed along with residual Mn 2O 3 at elevated temperatures because of insufficient dispersion and mixing of the reactive cations. When a homogenizer with a greater agitation speed is used, however, a well-mixed precursor solution is prepared, and pure LiMn 2O 4 with a Fd 3 m structure is synthesized after calcination at 800°C for 1 h. LiMn 2O 4 powder prepared by the homogenizer has higher crystallinity, smaller particle size, and narrower size distribution than that prepared by the magnetic stirrer. Compared with powder prepared by the solid-state method, the LiMn 2O 4 powder exhibits smaller particle size and less agglomeration. Moreover, the emulsion process significantly shortens the heating time required. The prepared LiMn 2O 4 powder has a high discharge capacity (120.4 mA h g −1) on the first cycle and good cycleability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.