Abstract

The efficient synthesis of free-standing mesostructured two-dimensional (2D) nanofilms with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness represents a big challenge. In this work, it was serendipitously found that microemulsion droplets of tetraethylorthosilicate (TEOS) could serve as a novel dynamic interface for continuous growth of nanofilms. Based on this finding, a general, efficient strategy for the direct and large-scale synthesis of free-standing mesoporous silica films (FSMSFs) was developed. Remarkably, with the careful control of the synthesis conditions, the FSMSFs with high-yield as well as good control of composite, mesophase structure, orientation of the pore channel and thickness could be efficiently achievable. More importantly, by using polymerizable surfactants the preorganized monomers in the nanochannels of the resultant silica films could be further converted into 2D polymers and carbon nanomaterials as well as metal particle-decorated forms, as exemplified by using pyrrole-terminated surfactants, demonstrating a powerful method to create 2D inorganic, organic or hybrid functional nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call