Abstract
The production of water during crude oil extraction may result in the formation of stable water-in-oil emulsions. Such emulsions are problematic for a variety of reasons; for example, they increase the fluid viscosity and hence the pumping costs. Previously, Ling; [NMR Studies of the Effect of CO2 on Oilfield Emulsion Stability. Energy Fuels 2016, 307, 5555–5562] have shown that treating these water-in-crude oil emulsions with subcritical CO2 at 50 bar can lead to their breakage. These measurements utilized benchtop NMR pulsed field gradient (PFG) techniques to monitor the evolution in the emulsion droplet size distribution, which is a precursor to emulsion breakage. Experimental limitations meant, however, that the measurements were performed only following depressurization of the applied CO2 and as such were unable to directly distinguish between two potential mechanisms for emulsion breakage as proposed in the literature: (i) CO2 bubble formation within the water droplets upon depressurization or (ii) ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.