Abstract

Particle stabilized (‘Pickering’) oil-in-water (O/W) emulsions were fabricated using sugar beet pectin (SBP) microgel particles (SBPM) that differed in their crosslinking density and therefore elasticity. Droplet size distributions and emulsion microstructures were investigated via light scattering and complimentary imaging techniques: light microscopy, confocal laser scanning microscopy and scanning electron microscopy. Comparisons to emulsions stabilized by native (i.e., non-microgelled) SBP at equivalent overall SBP content were made throughout. The SBPM-stabilized emulsions (20 and 40 vol% oil) were shown to have an improved physical stability compared to those stabilized by SBP. For example, droplet coarsening on prolonged (9 week) storage at ambient temperature (25 °C) and on temperature cycling (75 °C) was substantially reduced for SBPM-stabilized emulsions. This is attributed to the greater steric barrier provided by SBPM particles and their higher energy of displacement. Furthermore, the higher viscoelasticity of the SBPM-stabilized emulsions (particularly at 40 vol% oil) retarded droplet creaming. This higher viscoelasticity could be due to weak flocculation of the SBPM-stabilized droplets or the strong influence of the SBPM on the viscoelasticity of the intervening aqueous phase, even at relatively low SBPM concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call