Abstract

BackgroundPostprandial hyperlipemia is recognized as a major cardio-metabolic risk factor, recently linked to the co-absorption of pro-inflammatory lipopolysaccharides with dietary lipids. This causes endotoxemia that is involved in the pathophysiology of obesity and insulin resistance, but to date the impact of food formulation is unknown. We tested a novel concept that endotoxin absorption can be modulated by fat emulsified structure in the meal, and potentially differently in obese vs. lean men.MethodsIn a randomized controlled crossover study, eight normal-weight and eight obese age-matched healthy men ingested two isocaloric, isolipidic breakfasts of identical composition including 40 g of milk fat that was emulsified or unemulsified. Plasma- and chylomicron-endotoxemia and chylomicron-triglycerides were measured during 8 h after breakfast ingestion.ResultsAfter emulsion consumption, parallel to an enhanced chylomicronemia, obese subjects presented an early and sharp increase in chylomicron-endotoxemia at 60 min (Ptime = 0.02), which was higher than (i) after spread fat in obese subjects (P < 0.05) and (ii) after both spread and emulsified fat in normal-weight subjects (P < 0.05). However in obese subjects, the iAUC of plasma endotoxemia over 8 h was lower after emulsion than after spread fat (P < 0.05) whereas in NW subjects such reduction of plasma LPS-iAUC was not observed (P = 0.67).ConclusionThis study provides initial evidence that optimizing fat structure in the meal can be part of a dietary strategy to lower the metabolic impact of postprandial endotoxemia in obese men.Trial registrationRegistered at ClinicalTrials.gov #NCT01249378 on July 13, 2010.

Highlights

  • Postprandial hyperlipemia is recognized as a major cardio-metabolic risk factor, recently linked to the co-absorption of pro-inflammatory lipopolysaccharides with dietary lipids

  • We recently demonstrated that postprandial endotoxemia is modulated by ingested fat amount in obese men: they have (i) higher postprandial endotoxemia and (ii) chylomicrons that get more enriched with LPS compared with normal-weight (NW) subjects after a bigger fat load (40 g vs. 10 g) [3]

  • We revealed that lipid absorption can be modulated by emulsifying dietary fat, which enhances postprandial lipemia and lipid βoxidation compared with spread fat [6]

Read more

Summary

Introduction

Postprandial hyperlipemia is recognized as a major cardio-metabolic risk factor, recently linked to the co-absorption of pro-inflammatory lipopolysaccharides with dietary lipids. This causes endotoxemia that is involved in the pathophysiology of obesity and insulin resistance, but to date the impact of food formulation is unknown. We tested a novel concept that endotoxin absorption can be modulated by fat emulsified structure in the meal, and potentially differently in obese vs lean men. The potential modulation of postprandial endotoxemia by modifying fat structure remains to be explored. Studying fat emulsions becomes a major issue (i) because of the importance of emulsions in everyday and in clinical nutrition and (ii) since recent results point out the negative impact of synthetic emulsifiers on gut microbiota and metabolic syndrome [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call