Abstract
This paper studies the emulsification capacity of aqueous extracts from white beans and reports the relations between the composition and structure of the extracts’ macromolecular components and their exerted emulsification ability. The extracts comprise of three distinct populations: one of large (few MDa) polysaccharides, proteins (tens of kDa), and smaller molecular entities (oligopeptides and oligosaccharides, polyphenols, and salts, among other molecules); the proteins and the smaller molecules adsorb onto oil–water interfaces, providing some emulsification capacity at pH 3 and adequate emulsification at pH 7. Unabsorbed polysaccharides, such as starch, cause depletion flocculation. Pickering phenomena are involved in the stabilization mechanism. The findings are supported by SEC–MALLS/UV, confocal microscopy, zeta potential measurements, and FT–IR data. A discussion is made on the particular attributes of each population in emulsion stability, on their relevance to culinary practice, and in their potential as replacers of artificial emulsifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.