Abstract
Polystyrene latex particles were synthesized using a method based on emulsifier-free miniemulsion polymerization under ultrasonic irradiation in the presence of 2,2′ azobis (2-amidinopropane) dihydrochloride (V-50) as a cationic ionizable water-soluble initiator and cetyl alcohol as costabilizer. The optimized conditions were obtained by using various parameters, such as the amounts of monomer and initiator, and the time and power of ultrasonic irradiation. In optimal conditions, the latex particles appeared to be about 250 nm in diameter through scanning electron microscopy (SEM). The SEM and gel permeation chromatography (GPC) analyses and monomer conversions of emulsifier-free miniemulsion polymerization were compared with those of conventional emulsifier-free emulsion polymerization using V-50 as initiator in both cases. The results showed that in the miniemulsion polymerization, the rate of polymerization (Rp) was significantly higher, and latex particles were significantly smaller than those in the conventional emulsion polymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.